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ABSTRACT )
) 4905

Electron density-height profiles in the ionosphere can be
obtained from virtual height-frequency records by solving an integral
equation. A new method of solution is presented, using an iterative
minimization scheme where the independent variable is the true height,
h, rather than the plasma frequency, fN‘ This has the advantage

that the method is not restricted to monotonic functions, fN(h) , and

can be used for distributions with a ""valley'. In addition, other height

- varying parameters can be used, such as the gyrofrequency, whose

variations with altitude is important for the upper F region, above

the electron peak.
An improved solution is given for the case where no data are

available below a certain frequency, f This is more general than

min
most available techniques, since no particular model need be
assumed for the underlying ionization.

The uniqueness of the solutions which combine data from the
ordinary and extraordinary rays for limited frequency ranges is
discussed, and suggestions are given for the solution of the valley

o = P

problem.,



I. INTRODUCTION

A. General Statement of the Problem

A widely used method of investigating the structure of the
ionosphere consists of transmitting a radio pulse of mean frequency,
f, vertically upwards, which is received again on the ground after
reflection in the ionosphere. One measures the time interval, T,
between the transmitted and received pulses and defines the quantity
"virtual height", h', where h'= EZ—T , and ¢ is the free space velocity
of light. If the time interval, T, is measured for a continuous range
of frequencies, then one may plot the virtual height, h', as a function
of f. The resultant curve is termed an "h'-f curve'' or ionogram.
We shall only be concerned with frequencies ranging from one to
twenty-five megacycles per second, and shall consequently adopt the
approach of geometrical ray-optics. Rydbeck (1942a) has investigated
the validity of ray-optics and shown that the difference between ray
optics and a full wave treatment is of little practical importance for the
regular ionospheric layers (the normal E and F regions). We shall
assume that the influence of collisions may be neglected, which is

permissible if the collision frequency is much less than the wave

frequency, i.e. f > 1.0 mc for heights above 150 km. 7 is given

by:
PR dh "R c
T = 2 -.v-—- - h' = V_ dh
o g o g .

where h is the height measured vertically from the earth's surface,

hR is the height of reflection, and Vg is the group velocity.
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C

If '= , where pn' is the group refractive index,
= g B g
g
hR
h' = S p' dh
(o}

The expression for ' has been derived by Appleton and Hartree, who
have shown that u' is a function of the plasma frequency, fN(h), ‘the

gyro-frequency, fH(h), the dip angle, 6, and the wave frequency, f.

he

h'(f) = y b (£ (h), £4(h), O, f] dh
(@]

Since the ionosphere is an anisotropic medium, a radio pulse
which impinges vertically on the ionosphere is split into two compo-
nents, with different polarizations and group velocities, which we

shall call the ordinary and extraordinary modes, i.e.

hp

h! () = 3; ° p! (Ey(n), £ (h), 0, ) dh (1.1)
hy

h! () = ‘S; wl (E(h), £ (h), O, £) dh (1.2)

where the ordinary mode is designated by the subscript o and the
extraordinary mode by the subscript x.

Equation (1.1) and equation (1. 2) are non-linear singular
Volterra integral equations of the first kind. The problem is to
determine under what conditions equation (1. 1) and equation (1. 2)
uniquely specify the plasma frequency as a function of height, fN(h);
and, providing that these restrictions are satisfied to determine what

numerical techniques, which are compatible with reasonable physical




-3 -

assumptions, are available for inverting these equations.

B. Origin and Importance of the Problem

Many countries of the world maintain a number of field stations
which have been engaged for many years in taking h'-f records at
intervals of one hour or less. Recently a satellite has been orbited
which takes h'-f records of the 'topside' of the ionosphere. The
determination of electron densities from h'-f records is important
because of the relative ease with which ionograms are obtained and
their low cost as compared to direct probe methods for comparable

amounts of data.

C. Previous Solutions

Equation (1. l\and equation (1. 2) were derived in the 1930's
and since then a number of techniques have been devised for inverting
these equations. Several excellent summaries of these methods have
been compiled, among them Schmerling (1957) and Thomas (1957). We
shall therefore neglect the details of the various methods, but shall
concentrate our attention on the assumptions, the rationale behind the
assumptions, and the limitations of the assumptions in several of the
more successful recent techniques. Since the equations are non-linear
in plasma frequency, one naturally seeks physically reasonable assump-
tions which allow one to linearize the equations, and, if possible,
invert them in closed form.

For a large number of cases, i.e. the majority of ionograms
obtained at night, the ionosphere may be approximated by a single

layer. The plasma frequency, fN(h)l is then a monotonic function of
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height, and the inverse function h(fN) exists. One can now consider

the equivalent problem of determining (;ifi- from the system:

N

f

§ N’ H(h) 6, f) I di (1.3)

N
b (6) = S ) 0 0GP diy (1.4)

o}

. . . dh
We now have a system of equations linear in I but the

N
kernels p(‘) and u}’( are still too complicated to invert the equations

directly. There are, however, a few special cases where the kernel
simplifies and the equations can be analytically inverted.
If the earth's magnetic field is neglected, the ionosphere

loses its bi-refringent property and only one mode of propagation, the

ordinary, is possible, where p_ = N1 - fié/fz_

o dh/df
h (£) = F—_lf—: df (1.5)
) 1-f12\1/f2

where the plasma frequency of reflection, fR , is given by the pole of
o
p(‘) , and fR = f. Appleton (1930) and de Groot (1930) showed that
o

equation (1.5) may be inverted, since this is merely a form of Abel's

integral equation. The solution is given by

N h'(f) df
h{f,.) = — 5 — (1.6)
\ifN - f

This also holds for the ordinary ray at the magnetic equator, but is a
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poor approximation elsewhere on the earth as shown by Shinn and
Whale (1952).

For propagation along a magnetic field line (magnetic poles),

L 1
we have T {1 - flz\I/f;{)a and By = (1 - flz\]/ff)&)2 In general
9 9
p(‘) = 5% (f “o) and p}'{ = 5% (f I‘Lx" Where f% = f(f + fH) and
F2
£2 = f(f - ).
£
CR 1 4an
h' (f) = = (£ [1 -42/£212%2 ) ——— df (1.7)
o J, 3T N/ iR R
ﬁ”‘fR 9 ~ 1% . dh
h;{ (fy = ,) -7 [1 -fl"'\llfﬁ] ) 3= dfy (1.8)
o N

Rydbeck (1942b) has shown how equation (1. 7) and equation (1. 8) may be
inverted analytically.

Another approximation is usually made, which is less stringent
than either of the previous two approximations. This is that fH(h) is a
constant equal to the value of fH at some suitably chosen height
(usually 100 km). For bottomside soundings where the height range to
be considered is roughly 100 km to 300 km, in which range the gyro-

frequency, f{ varies by only 3%, this assumption is quite good. But

H}
for topside soundings, where the height range is typically 1000 km to
300 km, the variation is about 20% and the assumption is poor. One

¥

now has linear integral equations whose kernels, e and },.L;{ , are

lBudden, K. G. Radio Waves in the Ionosphere, Cambridge
University Press, 1961. o
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complicated yet known functions of f2., f, f ., and 6. Due to the

H
complexity of the kernels one cannot invert the integral equations

directly, but one can derive an infinite set of linear equations whose

unknowns, c: satisfy the following
[e¢]
\?‘ .

- L c; QD(fN)l (1.9)
=0

where ¢ is an arbitrary function of £ e.g. fN’ f2_or log fN' This

N’ N

is a standard technique for solving linear integral equations. 1 This
approach has been adopted by Titheridge (1961) and Unz (1961). A
similar attack, in that one reduces the linear integral equations to a
system of linear algebraic equations, has been given by Budden (1954),
Paul (1960), Doupnik {1963), and Paul and Wright (1963). In their

approach, is approximated over successive intervals of plasma

dh
di
frequency, as compared to the former approach where one approxi-
mation is used for the complete layer. Both, of course, approximate
the infinite set of equations by a finite set of equations.

The above methods have been singled out because they are in
wide use at the present. They all implicitly or explicitly make the
following assumptions:

(a) fN(h) is a monotonic function of h

(b) fH(h) is constant,

(c) If h’o(f) and h}’{(f) are unobserved for f < fmin’ h(fN)

can still be uniquely determined for f 2 fmin by judiciously

1Kun’z, K. S. Numerical Analysis, McGraw-Hill, 1957.
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combining ordinary and extraordinary virtual heights
above {

min
(d) If fN(h) is a non-monotonic function of h, one can deter-
mine the monotonic distribution over certain ranges of

heights by combining the ordinary and extraordinary

virtual heights above fmin in the manner used in (c).

D. Specific Statement of the Problem

The conditions for a unique specification of fN(h) (which is

‘ proportional to N electron density) are to be determined. Under
these conditions a method is to be developed for obtaining clectron
density profiles from ionograms.

This method consists .of minimizing the squared differences
between the observed and calculated virtual heights for a given
model.

This method should be applicable to '"topside' and '"bottomside"
ionograms and, consequently, provision must be made f:or non-
monotonic and monotonic electron density distributions, as well as

the variation of gyro-frequency with height.
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II. THEORETICAL CONSIDERATIONS AND DISCUSSION

A. Conditions Necessary for Uniqueness

Because of equipment limitations, ground based stations do not
record virtual heights for frequencies below one or two megacycles
per second. The '"start" or 'low-frequency cut-off' problem consists
of inverting the given system of integral equations when hé) (f) and
h}'{ (f) are unobserved for f less than some minimum frequency, fmin'
If more than one layer is present, we say that the electron density
profile has a ''valley'. A ''valley' is present whenever fN(h) is a
non-monotonic function of h.

Let us assume initially that fmin = 0, a condition never met in
practice. It should be noted that, if fmin is quite small, then the
h'o(f) and h}'{(f) curves may be extrapolated from fmin to f equals zero
and the standard reduction techniques can be applied. The
following argument concerns itself with the many instances where
extrapolation of the h'-f curves is an uncertain and risky business.
Therefore, if fmin  o.cr h'-f curves can be extrapolated and fN(h)

is a monotonic function of h, then either equation (1.3) or equation
dh *
di

techniques mentioned earlier are applicable for bottomside h'-f reduc-

(1.4) uniquely determines and hence fN(h); and any of the

tion. For topside reduction the methods must be modified to include
the variation of fH with h. Doupnik (1963) and Wright (1963, personal

communication) have made some progress in this area.

1Lovitt, W. V. Linear Integral Equations, Dover Publications,
Inc., 1950.
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Now suppose fmin > o. Ther ore can show that one mode alone
cannot uniquely specify the electron density profile. Schmerling
(personal communication) demonstrates this in the following manner:
consider an h'-f record which has an frnin > o. For only the
ordinary mode, one can draw a number of physically reasonable
h(')(f) curves below fmin' If each complete h(‘)(f) is now reduced, a
number of different fN(h) profiles will result, all of which have the
same ordinary virtual heights above fmin' Therefore, numerically
inverting equation (1.5) by using hé(f) points above fmin alone cannot
uniquely specify the distribution which produced them; since there are
many distributions which will give them. A special case of interest is

that for fH = o and a monotonic layer

fdh/df
1 —_
h!(f) = § di (2.1)
which can be inverted to give
f . f f
2 N ho(f) af 2 min h' (f) daf h'! (f) df
hig) = 2 S' o .2z S S
N .o ™
° Ny - £ © Neg '\/
)
2 min h (f) df f h(')'(f) df A
h.(f = = ‘S‘ + § —_ (2. 2)
! " f2 fmin NE2 - £
- min Niy -

Equation (2.2) is an analytical statement of Schmerling's proof, where
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the subscript j designates the different electron density profiles
resulting from choosing different h(‘)(f) curves below { . and keeping
the same hg(f) curve above fmin' Several workers, notably Titheridge
(1959), Paul and Wright (1963), Storey (1959) and Doupnik (1963), have
suggested that one can determine the profile above fmin by using both
h(')(f) and the h'x(f) curves. The implied assumption is that there
exists only one electron density profile which can produce the same
h(‘)(f) and h'x(f) above fmin' We shall show that, in the case of longi-
tidinal propagation, 6 = 00, this assumption is false, but in general
their assumption may be justified.

Consider the following:

6 =0, (longitudinal propagation)

d . ~
—di exists, fH = constant, f]zg{ =f(f + fH), fi‘,\ = f(f - fH) then
f .
R ‘ 1
0 3| dh
1 - _ f2 2 )2
h! (£) = i o {f(l £2, /6% }di dfy

N N

£

R f2 71
then h!(f) = aif g f[l - -EJZ (?Th— dfy

() f;{ N

2
£ N «/f1 + £y o L an ]
! = f -

(o] O 1 (o]
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2
; Nt +EEy 1 f 2
2 1 gn N Vdh
§ — _ 2 2 = — e
S;ho(fl)dfl -1 ) [1-£/0 +ffH)} ar af, i fz)didi
R
similarly
2
; ; «/f1 -f £y 1
5 2 2 1 an
' - - -
S; hi(f )df _S W[flg‘ (1 N dide1
f . o N
H H
£ 5
f T H .
1 — z 2 5_92 —
S; BL(f )af = fS; (1-fN/(f -f fH)) ar. df, =
H
2.‘ 2 1
- f R (1 - fiz 4dh .
7| @y UN
R
x ¢ L
Let us define G(x) = 1 - N dh df
il B4 N
o X N
£
] , B , )
then + 5; he(f )af = G(fR(f)
f
and L g by (£ )dE = G (T 0)
f 3 X 1 1 R
H
£ eNE, +4f
-+
¢ ¢ _H H R
1
2
Glf,) = 5 n' (£ )adf
(£5) : L) af
o+ N 44t f =o



_ 2 T2
C o N+ 4R
7~ 1 2
-~ Glig) = : ‘ h' (£ )df
~fpg tNER 4R fl—o
2 2
o fH+'\/fH+4fR
= f =
£ . >
‘ T L { 2 ] h' (£ ) df
But G(fg) _—fjf hi(f )df = g () df
2
H fH+ «)fH+ 4’1’R H
2 72
. fH+\/fH+4fR
1
. 1 ,
: h' (f )df =
L {  ne
fH+'\/fH+4fR £ o=ty
_ 2 T2
. fH+«]fH+4fR
1 2
= 1 \ h' (f ) df
P 7z 7 ° 1 !
~fpg '\/fH+4R f =o
z z ) N
. i frg * de+ 4’f’R i frg *N 5 + 4R
if we now let f = = then f - fH = 5

A o = N 2 + 472 - - 2 72
nd  2f = i + 2+ 475 also 2(f - f) fH+'\/£H+ 4718

L or Aty
h'(f )d = h'(f )df
2f 3f X( 1) f1 Zf-fH ‘o 0(1) 1
o .

then

Taking the derivative of both sides with respect to f
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f fm hoi
' - 1 - - g
hx (£) . fH ho (f fH) PRPRY g h:) (fl) df1
T"H' f =o
1
Forf > f . -f . = f .
min H min
fmin - fH
h'(f) = ——— h'(f-f H h'(f )df  +
X - f-f [0} H - 2 [o T | 1
H if - fH)
f - fN
+ h'{f ) df
g 0( 1) 1 }
T . -f
min H
. f - fH
T , H g \
hx(f) = oI ho (f - fH) - A + ho(fl) df1
H (f - fH) ~
fmin - fH
fmin =~ il
where A = S‘ hé)(f } df and the ordinary curve is
A 1 1
observed down to some f . and}.'v o=f . +1.. .
min min min H

This equation states that one extraordinary point and the h(')(f)

curve above f . determine the h' (f) curve above f_ .
min X m

. The
in

above equation also states that at the poles ionograms having hé(f)

curves such that

fmin-fH £
h' (f }df = h' (f Ydf
S; o (1) 1 i o ( 1) 1
1 2
>

will have the same h}'{(f) curves for £

1 —
and h0 (f) =
1 2

h' (f)forf>f .
o) min

f . . Therefore, a number of
min
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different electron density profiles will produce the same h(') (f) curves
above fmin' Adding the h}'{ (f) curve has limited the number of curves
one can draw below frnin (to use Schmerling's argument), but it has
not reduced the number to one curve. Off the poles this derivation
obviously breaks down, and as Wright (personal communication) has
pointed out, in practice, even close to the poles, one observes the
rays reflected from X =1 and X =1 - Y, rather than X =1 + Y (some-
times called the z-trace) and X = 1 -Y (sometimes called the x-trace).
Under these conditions there does not seem to be a proof similar to
the one presénted which implies that the ordinary ray (X = 1, reflection
condition) and the extraordinary ray (X =1 - Y, reflection condition)
contain exactly the same information. Wright also pointed out that
model studies done by his group indicate that, at a particular
latitude, p(’) and H;( are approximately proportional to each other; but
in general, of course, this is not true. The case at the poles seems
to be similar in the sense that here again nothing new is added by
considering the z-trace and x-trace together.

Since, in general, |‘L|o is not proportional to p,}'( , we will
assume, pending more detailed studies, that the h'o(f) and h}'{(f) curves
do uniquely specify the profile above fmin' We willvtherefore present
a solution to the ''start' problem in II-D based on an idea suggested by

Titheridge (1959).

B. Minimization Techniques

The technique which we wish to apply is an iterative one where

a certain quantity is minimized. Therefore, we shall first discuss
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minimization techniques in general,

Most of the useful methods for obtaining an approximate real
solution of a real non-linear equation, of the form f(x) = o, involve
iterative processes in which an initial approximation z to a desired
real root x = a is obtained, by rough graphical methods or otheliwise,
and a sequence of numbers z, zl , z2 ,... is generated which

converge to a limit @ . The process is based upon the development

of a recursion formula for z,, in terms of z,, SO that z., may be

1+1 i+1
calculated after zZ; is known. The equation y = f(x, a, b, c) can be
cast into the above form, where we wish to determine the parameters
a, b, and c such that this formula is to be a good fit to the data
(x'i, Yi)’ (i=1, ..., m)and G(a, b, c) = 1'%1 A —f(xi, a, b, c)|2.
If the observed experimental values exactly satisfy the assumed
functional form, f, and there is no noise in the data, then there
exists an a’, b!, and ¢! such that G(a!, b!, c!)=0. In general, our
functional form will only approximate the ''real' function, and the
experimental data will be noisy; we therefore seek an a, b, and c
which will minimize G. Since G is usually a non-linear function of
a, b, and c, iterative techniques are suitable. The three most
commonly used techniques are the (1) grid search, (2) gradient, (3)
method of differential correction. (3) is commonly called "least
squares'', which is somewhat confusing, since all three methods are

based on minimizing G (the sum of the squared residuals). We

have therefore adopted the nomenclature of Nielsenl. A brief

lNielsen, Methods in Numerical Analysis, MacMillan, 1961,
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description of methods (1) and (2) is given inKunzl. Method (3) will be
explained in detail, since it is the technique which we applied to invert
the integral equations. The following derivation was taken from

Nielsen.

C. Reduction of Virtual Heights to True Heights

We here assume fmin = 0, or that the H(f) curve can be

extrapolated to f = 0, and therefore we need consider only one mode,

the ordinary.

bR

C 2
h'(f) = \) H'(fN(h), fH(h), 6, f) dh (2.3)

o

Here the subscript o has been suppressed. ' is now

2
expressed as a function of fN(h) for convenience. Assume now a
2

2
functional form for fN(h) = fN

(A, A, ..A , h) where the A. are
1 2 n 1
undetermined parameters. One can then determine the parameters

in the following manner:

At the height of reflection (for the ordinary mode)

2 5 5 2
f,=1 —f2=f (A A, ...
N(l} Z)

— 2 =
N ,A_, hp) —F(?, hp) o
2
2 = 2 -
where F(f*, hR) = f fN (Al, Az’ - ,An, hR) and we assume that
F(f?, h,) defines a unique implicit function, i.e. h, =h_(A ;A ,. ..
R R ™RV S,
2
A, £4y.
_ 2
:-hR(AI, AL
2
| B 1 — 3 [}
h' = h'(f) = I(AI,AZ: LA D)= w (f,fH(h),e,fN(Al,AZ, ... A_,h)|dh
h=o0
h'=I(A ,A ,...,A ,f) (2. 4)
1 n

Kunz.
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Here Iis, in general, a non-linear function of the Ai’ and equation
(2. 4) is to be a good fit to the data (fj, hJ!) forj=1, ..., m. The

residuals, Rj’ are then given by:

R =I(A, ..., A, f)-n'
1 1 n 1 1
R = I(A, ,A,f)-h'
2 1 n

R = I(A , , A, f )-n
m 1 m

where hj are the observed experimental values. We now make an
initial approximation of the parameters Ai’ and call them OAi' A
number of different ways may be used to make these initial '"guesses',
some of which will be discussed later, We seek to determine
corrections, c;,to these approximate constants such that the corrected
constants will better fit the data. Denoting the corrected constants

by Ai’ we have

18, = oA, +c, (2.5)
then R, = 1A, ..., A, f)-h! 7 =1, ..., m

J 1 n ) J

R. = I{fopA +c, ..., oA_+c_, f.) - h!

J 1 1 n n ) J

R.+h! = IfoA +c, ..., oA +c_, £f.)

J J 1 1 n n-j

L.H.S. = R.H.S.

Expanding the R. H.S. by Taylor's theorem for a function of several

variables about the initial approximations, i=n

o1,
_ J
I(oAl + cl, ., oAn + cn, fj) = I(oAl, e ’OAn’ fj) + Z (_8 Ai ) c,

i=1
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+ higher order terms in cs

91.
_Jl = . . . o1
where aAi) O_ the partial derivative _TA? evaluated at
Ai =oA. (i=1, , m)
Defining ohJ‘. = I{oA ,..., oAn, fj) as the first approximation to the
1
observed values, h! . I.=I{(cA ,...,0A ,f)
J J 1 n
P38
then R, + h! = oh! + Z J C. i=1,...,m
il J oA, i
i=1 o

where we have neglected higher order terms in Css which is valid if

the c; are Y‘small'',

n
91.
Finally R, = Z( J) . + r. where r. = oh! - h!
Al IR b--90 S B T B B
1=1
m
Glc ,..., =ZR:" 2.6
(c]l cn) j (2.6)
j=1

A necessary condition for G to be a minimum with respect to the c, is

that ?T(c} = o for every i.

= 0 (2.7)

4
5

[¢]

=3

|
1]
[y S
i

e, [a5]
o|_®
§)
13
[3®]

H

QO @
N

j=1

Equation (2.5) gives rise to the so called "normal'' equations:

|
(o]

BIj (811 91 BIm
- 2
E Rilgae TRTRR TR, ﬁl)o+--~+Rm—a‘A—l
j=1




m
BIj 8]',1 o1 BIm
- 2 -
z RJ TA)O R1 A |, +R2(8A o+ +R_\7%& o =o0
j=1 2 2 2 2
m
(BIJ) (31 ) o1 ) (Blm)
R. |l=% | = R |\5a 55 5% =
Z : Ano . no+RZ Ano+ +Rm Ano o
j=1

(=]

o9
- J
where Rj = Z (-a-—K)o <, + r'j
1=1

=

The normal equations are then:

D& axj) (313) = ‘BIJ)
z z 9A o \0A.lo ¢4 + z 5Ano r_] =
j=1 i= o ' j=1

We now have n linear equations with n unknowns, c;- Having
determined the c; from the normal equations, we can then determine
the 1Ai from equation (2.5). The lAj can then be used as approximate
values, and the whole procedure repeated until n—lAi/nAi is less than
some predetermined delta {convergence criterion The nAi are the

"best'' layer constants for the assumed functional form in the least
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squares sense. Inspecting the normal equations, we see that the
coefficients of the c; are sums over the partial derivatives of
I(A1 v ooees AL f) with respect to the Ai' We shall now derive the

expressions for these partial derivatives.

To simplify matters we shall consider a one parameter model,

ie. £(h) = g(A,h).

hp (A, f)
Then I(f,A) = S w'lEp, £, g(A,h), 6) dh . (2.8)
o

Also let g(A, h) be a monotonic function of h (this restriction

will be removed later). Then

f
—_ t Y dh
If, A) = § plEg, £y, 8) g dfy
o N
df
dh _ H _
where HTE = S(A, fN) and ﬁ = 0
f
81 9 , dh , L
8_A = Wg S(; v (fH, f, fN, e) -dﬁ di, let fN = f sin ¢
w2
91 ] . dh
% = 5& . fp'(fH,f,s1n ¢, 0) cos ¢ % (¢) do

% (6) = S(A, f sin ¢)

It can be shown that lim p' cos ¢ = _s_l_rll—e' , where 0 is the geomagnetic
dip angle b—+m/2
(Schmerling(1957) equation 4, 20). This limit exists for every 6 # o.

The function H(f, ¢)= pu' cos ¢ is undefined at the upper limit, n/2, We
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. . 1 .
therefore define it to be S5 B  i-©

1
S0’ ¢ = w/2
H(f, ¢) =
p'cosd; o < ¢ < w/2
m/2
a1
2 - S‘ HE, ¢) gr (8) do
If 8%h t d t d dh ti th
—rA-a—f—— exists and is continuous, an -(EE is continuous, then
fH(f, ¢) (4)) and -5_ {fH(f ) =4 (o) }are continuous in the
N :
rectangle R: ¢ < A £ B . These conditions are sufficient
/2 £ ¢ L o
to differentiate under the integral signl.
w/2 w/2
31 _ 9 dh _ 9 dh
5 = 7a S‘ £H(E, ¢) 5= (¢) dp = S fH(f,¢)g-A(df—(¢) dé
o N o N
w2
8L _ fL(E., £, sind, 0) cos d 2B ds (2. 9)
52 ), ‘rtm b ! TASL, ' -

In general, it is convenient to re-formulate equation (2. 9) in terms of
derivatives of fIZ\I rather than derivatives of h., We shall now derive

such an expression,

f
91 9%h

& - S. ! (fH, i, fN) AT di . (2.10)
(o} N

1Brand, Advanced Calculus, Wiley, 1955,
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d%h _ 9%h

Assuming that n——WN = m;\]_ﬂ—
1 _ 8%h _ 0 o h
9A C go“ U b s aa 4 = ) v St N 3R] Y
IR 4 PR
o1  _ | 8 [6n N . , 3 [6n
E7 S R - SN ﬁg(ﬂ} Gy dh*goﬂ (fH’f’fN)F'K(B'K) dh
hR BfN)
o1 0 9 A
= =§ o (fH,f,fN(A,h))ah 5T dh. (2.11)
o
5 h

Let fN(A, h) = g(A,h). Equation (2.11) is valid for monotonic
layers and a constant magnetic field as a function of h.

We will now remove the monotonic assumption. Suppose
fN(A, h) is a non-monotonic function, then g(A, h) is a non-monotonic
function of h. We will only consider those h'(f) whose probe
frequencies, f, have hR's which do not satisfy the equation g% = o,
i.e. we will not consider those frequencies whose heights of reflection
are extrema of the model. For physically realistic models, this

condition throws out a negligible number of virtual heights.

hy | h hy
-
Then  I(Af) = S‘ u'dh = S W dh+ ' dh
o Jo “h M

1

where g(A, h) is a monotonic function of h for hl < h <h
h1 hR

R -
a1 9 9 .
Then 5% = 373 50 wo dh+ g S; ' dh

1




- 23 .

1
where ' and 38—%"'— are continuous in the rectangle R: o < h < h ,
1

a < A < B
h
5 Lo, 8ty dh (0 £y /8A)
- B ' 1
A -S 5t 5A T M| TAC “Th{ dh. (2.12)
o N h—h1

vhere hl is any height such that g(A, h) is monotonic for h > hl. We
have shown that the derivatives of I with respect to the layer constants,
Ai’ exist for both monotonic and non-monotonic functions of h, and
derived the explicit formulae for these derivatives, for a constant
magnetic field, i.e. these formulae are applicable to bottomside
ionogram reduction.

For topside analysis, we cannot ignore the variation of gyro-
frequency with height, and shall therefore derive the equations for the
derivatives of I with respect to the layer constants for a monotonic
layer (ionograms from the topside satellite Alouette indicate that this
is generally the case) and a variable gyro-frequency.

h:hR(A,f)

I(A,f) = o' (f, £,,(h), 8,g(A, h)) dh (2.13)
h=h_(A)

where equation (2. 12) is a convergent improper integral .n<

hR-e
I(A,f) = limit § p' dh
€ =0 h
h -¢
a1 8  limit (N
0 dA t—o Ly



_24 .
In order to interchange the derivative operator and the limit operator,
iﬂhR o '

one must show that 2.12 converges, and that . 5 A dh converges
o h
o

uniformlyl, which for the complicated integrand, p', is rather
difficult. We shall assume that the derivation which led to equation

(2.12) serves as a plausibility proof that this interchange is permiss-

ible.
FhR—e
a1 _ limit 0 L 1
Then 52 = ¢—o 3 j “
o

hR—E 2

A f - -
oI _ limit { (8 p') (8 N) dh '{H'] 0 (hR ) _L“.} 9 b,
%A T ¢ —~o Z 0 A _ 9 A . 0A

ho 9 fN h=hp -¢ h=h

1

Since p' and -g—% are continuous in the rectangle R: o <h = hR - i,
a < AL B.

2 2
- s 5 [ 'F ] fN )/8 fN) wheére for a monotonic laver
onsiéer: Hp- M| | T A 3 h (a N

# o except at h=h__

ax.
2 2 2 / 2\
] ,ap.\—(af \ afN) s B K fNi (afN”
ah) 5 A 3 h “a_h"t\'a‘_A;/ 3 h
2
: . |9 f [0 f
low] _ 2w (2N o p) | _H
where | h) By ?\ah) * {\Bf \oh|
N
2, 2 /o2
Ll (afN:i(afN\/(afN\: N (afN}
R h | \3A / (3R 5 ¢ 5 A
N | N
. N 2 a2 2
5 '(afN) 8 iy ol (B .
© 3R HL—aA IS T 58 P
N

]Srand, Advanced Calculus, Wiley, 1955.
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o) (o) [ ]+ v LB )

L

2A

ORI ey AT [}

S g AR

h=h_ -¢

-§ R (_M)(afH)[{af;I 8f12\1”dh
h=h_ 5t |\ R [L{AR )\ 7R

_ h_:hR RER / N} an
S‘Z‘j“ & wu%f%)/(ﬁ Jor - Loss] Lot

" and, for the ordinary ray [%—KJ = —5a
‘ h=hR
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since h = h(flz\I , A) and hRE h(f?, A) for the ordinary mod. .

2 2
. an _ ohlEe A oy _ [8hliy &) _ 9h(fZ, A)
" 8R T T B8R DA h=h T |7 9A fz_fz‘— 0 A
S =
| 5h
— < 9h(f%,A) _ R
but  hp= h(f?, A) . —5=3— = 5%
. [8h‘| _ g _,[ahJ _ 9lhg-e)
A h=hg oA oA h=hy, -e T 0A

81) limit R "5 8(hR-e) dh
(ET £ = o §h A 4+ [“Lh . TR '[“J_S_A

5. [ 9h 9h
o lonl, [en]
3% T b 7R b

9f af 9 £
H N N |
( ah){ ( aA)/( 5h ) } an
R 5 (8f12\1)/(8f12\1)}
. ' dh
Sh:h a Bh{ 9 A 5h
a1 limit h=hp-¢ (aflz\I 8f12\1)
"(H)f T e—o S “'ah{ 5A 5h }dh

h=h
o
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-5;1?"( ) () 5]
Beoe el (f;a}dh-s;‘;ﬁf‘(%auis—)

afz sz
e

(2. 13a)
Equation (2. 13a) is valid for a monotonic layer with variable gyro-
frequency for the ordinary mode, and can obviously be extended to non-
monotonic layers in the manner of equation (2, 12).
We have derived the system of equations necessary to reduce
top and bottomside ionograms for fmin = 0. We shall now consider

the ''start problem''.

D. "Start' Problem

hRo hminO hRo
1 —_ — 1
ho(f) = S‘ THY dh = y T dh + S‘ "Lo‘ dh (2.14)
(o] o h_ .
min
o
hR» hminx th
1 — 1 - 1 1
hx(f) = 5 pxdh = g pxdh + S. p.xdh . (2.15)
o ) h_.
min
x
-where h__. is the height of reflection of the ordinary ray at f_ . |,
min min
and h_ . is the height of reflection of the extraordinary ray atf . .
min_ min_
We shall assume thath . =h . =h ., i,e. f? =f .
min min min min min
o x o] x
(fmin - fH)'

X
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There are two approaches to the start problem:
(1) Paul and Wright (1963) and Doupnik (1963) assume
that the layer is monotonic for o < h < hmin and

therefore derive from equation (2.14) and equation

(2. 15) the following

‘R min R
dh dh dh
h'(f) = 3 p!o oo— df :S‘ n'o—— df +S‘ ! df ..
o) o ' © di N 5 o fN N ¢ 'O di N
min
(2.16)
forf 2 £
min
[ £ . T
R min R dh
dh dh - df
h' (f) =§ p! — df = S‘ B! +5‘ ! df N
x o x fN N 5 x fN e X N
min
(2.17)
dh
They then assume a model form for for o £ . £ f .
df N min

N

and determine the constants from a system of linear equations using
both ordinary and extraordinary virtual heights. Once this is done,
their standard techniques are used to determine the rest of the
electron density distribution.
(2) Titheridge (1959) suggested that one approximate ' for
o £h < hmin by a low order polynomial in X, and

allow for the underlying ionization below fmin by com-

puting the moments of the distribution,

h1fnin K
5 N7(h) dh, from the ordinary and extraordinary
(o)
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virtual heights.
We shall extend this technique using a better approximation

which provides an improved representation of the underlying ionization.

h h . h
R min R
' - 1 —_ 1 1
h'(f) = So b (£ £ (h) ] dh S; " (x(h),y)dh +‘g‘ b (£, £ £y (B)an
min
where x(h) = 'fIZ\T (h)/f> and y = fH/f
assuming that, for the bottomside, de/dh = o
m
v J
Let p = Z Aj(y) x for o < h < hlnin
J
2 = < <
and fN(h) g(Al, e, An’ h) for hmin < h £ hR' (We need only

consider the ordinary ray since similar results can be derived for

the extraordinary.) We wish an accurate approximation for ', having
a2 small number of terms over the interval o £ x £ 0.8. Since this
approximation will be integrated over the interval o < h < hmin’

the approximation must be uniformly good over the interval. Obviously,
this excludes Taylor expansions which are essentially point expansions,
and suggests an orthogonal expansion. Lanczos1 recommends the
Chebyshev polynomials as the orthogonal polynomials having the

maximum rate of convergence, i.e. they approximate the function over

an interval, within some delta, with fewer terms than any other

1
orthogonal expansion., Consider the case fH = 0.0. Thenpu' = —l—-——i,
and we wish to obtain an expansion of the form ' = nz-o a Tn(X)

1Lanczos, Applied Analysis, Prentice Hall, 1961,
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) 1 \ 5 1 H'Tn(X)
where aj T — S‘ — dX ; a, = — 5 —_ dX n 21
T VT md VT x?

>

and Tn(X) are the Chebyshev polynomials over the interval -1 € X < 1

commonly called the Chebyshev polynomials of the first kind.

p'o= L is defined for o £ X < 1. Normalizing the interval of
NT - X
approximation, o < X £ 0.8, let X =0.8 X1 foro £ X <£ 1 then
1
p'o= ——1——— where o < X < 1. Now transform to the interval
N1-0.8X !
1
[-1,1] by letting X = 2X -1 for o< X <1. Then -1 £ X <1 and
2 1 1 2
p'o= ! where -1 < X < 1.
N1-0.4(X +1) 2
2

Once the Chebyshev expansion has been obtained it can be

rewritten as a polynomial in X. We then have the following:

hmin o hR
h'(f) = 5 z ann dh + § u' dh . (2.18)
o h=o h

min

Where the bn are functions of y = fH/f in general., Egquation (2.18)

holds for all frequencies, f, such that{f 2> min
NO0.8
Smin [ & b 2.7 hr N Pmin o,
h'(f):S‘ Z o dh+‘§ p'dh=$—§ £2 "(h) dh +
n h ", n o N
© nzo f? min n=o f?
hR
+ ‘81 p,' dh
h
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min 2N bn
Let S' fN (hydh = c¢ and —— = D (f)
n 2 n
o f
m hR
then h'(f) = Z Dn(f) < + &; p' dh . (2.19)
n=o min ’

Where the Dn(f) are known functions of f. We now choose a model for
2

f . (hYforh . < h < h (h is the height of the maximum

N min max = max

electron density of the layer). One now must determine the model
constants in addition to the c, - A similar equation can be derived
for the extraordinary virtual heights. One then may use these two
equations to determine the unknown constants in the manner described
in II-C. Also, if the ionogram indicates that fN(h) is a monotonic

function of h for h > hmin’ one may rewrite equation (2. 19) in the

following manner:

m fR
h'(f) = Z Dn(f) c, + g p'gf—h di . (2.19)
n=o f . N :
min

The methods of Paul and Wright, Titheridge, or Doupnik may now be
m

used. Since one can only determine a few terms of X% Dn(f)cn ,
' n=o

i.e. m typically 3 or 4, from the ordinary and extraordinary virtual
heights,it is imperative that the expansion of u' be a quickly convergent
one, i.e. a Chebyshev expansion. It is obvious from the above
discussion that no model assumption has been made in the unseenrange

(f < fmin) and therefore this approach is inherently superior to the
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existing 'start' solutions which do make these assumptions. One
need only examine the results of the model studies of Doupnik (1963)
to realize the sensitivity of model approaches below fmin to the
particular model choosen. The above technique will work for both
monotonic and non-monotonic profiles below frmn

Not only do the c enable us to compensate for low lying
ionization, but they also determine uniquely the monotonic profile
which produces the correct retardation up to hmin' Consequently,
if the profile is monotonic below fmin’ we can determine this profile

from the c, in the following manner: for a monotonic profile,
dh

exists. Now let

di
265, , ,
C’ET -1 - foroSfN_Sfm then -1 < § <1
fmin
2 2
at = 2 di . dh 2 dh _ dh _ frnin dh
. R S— 3z T 2 dat dt -~ 2 2
f df f df
min N min N
m
dh _
aT Z a_ Pr ¢y . (2. 20)
r=o

where the Pr are the Legendre polynomials, and

] 1 r
_2r+1 dh _ 2r+l { dh

r 2 . dz Pr () dt = 2 dg z

-1

\
b, &l dt

»
I

j=o

r 1
_2r+1 dh j
N e L
j=o .




2 .
b fmin a |2 flz\l j ,
at §.J dt = S _— -1 df
2 2 N
-1 (o] di f

T 2
21+ mm ZfN . Jj dfz
ar 2 2 - N
j=o min
2 fz ]
min 2 i 3 min Q
where 5 dh N ) e - z g b 27 g
at £ N N
N min fJ=0 m1n
r J min 2
2
a = 2ZH Y i‘ b.d,S £ nere sh=|_2_ C _dh ¢ T af?
2 ' \ df N N
J=0 :o min N
min ,pn mm
But < i fN (h)dh Sv di for a monotonic
layer
— S
mm
T
- 2 C
_ 2r+1
a, = — z bj dy 7 . (2.21)
j=o (@ =o min
m
dh 2 dh 2 Z
= = - a_ P_ (L)
a?, ¢ . 96 7 ¢ r
N min min r=o
dh SIS 2
p” = Z z (2r +1) bJ. dep_—l ) : (2. 22)
N r=oj=o /=o min
min Z/Q
Where f:i = S fN (h) dh for a monotonic layer. Given the
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dh . . 2
C,Q. we can expand Ez_ in a Legendre expansion for o < fN < fmin
N
2
fN
2, _ dh 2 _
and h(fN) = S‘z IR dR where h(fmin) = ¢,
f1rnin

E. '"Valley" Problem

The techniques which we have developed thus far allow us to
approach the valley problem in one of two ways. One way is that
suggested by Wright (private communication), which is to treat the
valley problem as a ''low frequency cut off' problem where fmin is
now the critical frequency of the lowest maximum of ion density. The
other approach is to assume a non-monotonic function of h and
attempt to determine the constants in the manner prescribed in part

C. Which is the more feasible can only be determined by model

studies.
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II1. MODEL STUDIES

A. Purpose of Model Studies

Model studies were conducted to test the method developed
in II-C. Ordinary virtual heights were computed from a parabolic

layer, i.e.

(h-h_)?
2 g2 m
fN-fP{l—————z—}. (3.1)
a
f_, = penetration frequency of the layer

P

hrn = height of maximum electron density

a = semi-thickness of the layer.
We then attermpted to derive the layer constants for this model from
the computed virtual heights. Having chosen the functional form, i.e.
a parabola in h, the problem is how to make initial estimates
of the layer parameters, fp, of course, can be read off the
ionogram. The simplest way to determine hm and a (probably
the worst) is to guess them. This was done because we wished to
determine the effects of the initial values of the layer constants on the
final values. As with most minimization routines, this routine will
be trapped by the first relative minimum it finds. Therefore, one or
more re-runs starting with different initial values of the parameters
is recommended as a standard procedure where possible. This
procedure will find a new relative minimum,or confirm the accuracy to
which the original one has been located. It should be noted at this
point that the technique developed in II-C is one for determining a

model for the whole layer. Schmerling has pointed out that, in general,
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one will not be able to assume a simple functional form which will
fit the whole layer. But the extension of II-C to a lamination proce-
dure as used by Paul and Wright and Doupnik is obvious and hence
will not be given. For this test, four sets of '"guessed' layer constants
were used with the same model. In addition, to determine the effect of
"noise' on the method, three sets of input data were used: exact
virtual heights, virtual heights rounded to one km, and virtual heights
rounded to five km. One would also like to know the minimum number
of virtual heights which will give accurate results, and, the number
of input virtual heights were, therefore, varied from six to twelve.

Only ordinary virtual heights were used.

B. Numerical Techniques

h

R
One must numerically evaluate integrals of the form S‘ p' dh
o
hR
and § n' g(h)dh; since we do not wish to restrict ourselves to
o
. S dh 2
monotonic models, we cannot make the substitution dh = di
df?
N

Initially Gaussian Quadrature was used to perform the integration,
but the integrand goes to infinity at the upper limit; therefore, the
standard Gaussian Quadrature formulae are inadequate (inadequate in
the sense that they require large amounts of computer time).

Buddenl has shown that

h

R 5 hR
h'(f) = S‘ g dh + f-s—f ‘§ p dh
O [o]

1Budden (op. cit).
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where p is finite and continuous over the entire range of integration

h
S‘ R p dh was integrated using an extended five point Gaussian

o

Quadrature method with ten intervals.

h
To evaluate f -5%. S‘ R p dh, we used the finite difference
o

formula.
hp hR(fz) hR(fl )
he AAS’ wdh  f S' wlf,)dh -g w(f )dh
9 . o _ o) o)

fo1 § pdh =1 AT - F T

o 2 1
where f = f+ 0,001 ; fl- = £-0.001. Comparing the virtual

2

heights given by this method with those obtained analytically (a para-
bolic layer in h with no magnetic field), the error was on the average
about 1073 km over the complete rangeof o < f < fP .

The program which we used is ""A Generalized Least Squares
Program for the I. B.M, 7090 Computer' by M. H. Lietzke, as
modified by Yoder of this University for the I. B,M. 7074. This
program requires only the function and the partial derivatives of the

function with respect to the coefficients. In our case the function is

ShR(fP, h_, a, f) oy
- ! 2 . -
Ifp, h_, a,f) = h_-a+ _ p(f,fH’fN, (h), 8] dh; —~ = o

m (3.2)

(h-h_ )2
where flz\I(h) = f%, {1 - __ﬂ__}

a.Z

1
- _ _ g2 /¢2 2
and h, = h a (1 f/fP)

R ;lethozh - a

m



2
h )
81 :10+SRM'a PPm dh = 1.0
%k, h oh (af?‘ )
o N
o h
2
. 4| "
o1 0 da 1
= -1.0 +S‘ p.' - — dh = -1.0 +— |_1_'dh
9a h 3h of h
o N o
9 h
(afz )
h N h ) .
51 :S‘R“' o ) V¥ | S\RH,{ 1 __h'hm}dh
8ip h, oh (af;) fp . h-h L2
9 h
C. Results and Discussion of the Model Studies
The sets of initial guesses used were:
(fP = 6.0, hm =156, a = 134); (fP = 6.0, hm = 453, a = 38);
(fP =6.0, hrn =217, a = 22); (fP = 6. 50, hm = 350, a = 100) . The

actual values of the model constants were fP =6.0, hrn = 300.0,
a =50.0, in all cases, fH =1.682and 6 =0.52360.

All sets of data converged to the actual layer constants within
five iterations (see tables, where Res = difference between calculated
and observed virtual heights). The results indicate the following:

(a) Convergence was unaffected by ''guessing'' values of the

layer constants.

(b) The minimum number of points which could be used with

consistent results was six.




Number of
Iterations

0

1

Table 1.

Number 6f
Iterations

0

1

Table 2.
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Parameter Values

e
6.0000
6.0168
6.0067

6.0072

h
m
217.00
300. 30
299. 64

300. 27

a
32.000
50. 600
50. 606

50. 606

12 2
Z (Res. )i

iz

0.62243 x 10°

0.51117 x 10!

0.56060 x 10!

0.51780 x 10!

Determination of parabolic layer constants, using

12 data points rounded to 1

least squares.

Parameter Values

p
6.5000
5.8269
5.9354
5. 9964
6.0074

6.0073

h
m
350.00
284.86
297.42
299.09
299.50

299.50

a
100.00
34.822
47. 540
50. 229
50. 622

50. 627

km

0

0.

0.

by the method of

12 2
¥ (Res. )i
i=1

.36079 x 10*

44207 x 103

43587 x 102

.15599 x 10!
.92427 x 10°

. 92499 x 10°

Determination of parabolic layer constants, using

12 data points rounded to 1 km, by the method of

least squares,



Number of
Iterations

0
1
2

3

Table 3.

Number of
Iterations

0
1
2

3

Table 4.
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Parameter Values

fP
6.000
5.999
5.999

5.999

h
m
453.00
299.09
298. 88

299.08

a
38.000
49.872
49.870

49.872

6
T (Res.)?
i=1 1

0.15033 x 108
0.48342 x 10!
0.48026 x 10!

0.47737 x 10!

Determination of parabolic layer constants,

using 6 data points rounded to 5 km, by the

method of least squares,

Parameter Values

fP
6.0000
5. 9999
5. 9999

5.9999

h
m
156.00
299.09
298.89

299.08

a
134.00
49.873
49. 869

49.873

2
1 (Res. )i

1

0.20066 x 10°

6

0.48329 x 10!
0.48003 x 10!

0.47738 x 10!

Determination of parabolic layer constants,

using 6 data points rounded to 5 km, by the

method of least squares.
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(c) Convergence was not affected by noise in the data, i.e.
since our system is overdetermined the effects of noise
are minimi zed.

(d) The method is most sensitive to the parameter fP'

Remembering that we perform a Taylor expansion of I about
the initial parameter values and drop all terms higher than first
order, we are somewhat surprised that all of the sets of '"guesses"
converge, since in some cases the corrections were of the same order

of magnitude as the OAi' The explanation is as follows:

_ 91 91 91
I(fp,hm,a—,f) = IO + (3?;) AfP + Fh—) Ahm + -5_8.) Aa
o mlo o
+ ... + higher order terms in
Afp, Ahm, Aa
Where I is I evaluated at the point (f_ , h_ , a ) and the partial
o Py’ my’ o

derivatives are similarly defined. The higher order terms may be
neglected if a suitable combination of the following two conditions are

satisfied.

(1) ! A bj ! << Mj , where j=1, 2, 3 and Mj is some upper bound
(letting bl = fP’ bz =h_., and b3 = a) How Mj is chosen is given bY
Morrison (1959).

921

(2) ‘—5—8 B, 95,

<<'1. This condition depends on the functional form

2 . 2 2 (h—hrn)2
of fN (h) . In the model studies, fN(h) = fP 1 - _;z_—



R
: — - 1
Then I (fP, hm, a,f) = hm a + S‘h p' dh

where hR =h -a \)1 -fz/f; and h = hm-a. Since flz\l(h) is

a monotonic function of h, we can consider the inverse function,

f2
dh
_ 1
I (fP: hma a, f) - hO + ‘S‘ 3 (f’ fH, fN) 2 di
o di

_ { 2,2 __  dh _ a/2
where h = hm - a 1 - fN/fP =

2
df 2 2 42
N o N1 - fN/fP
2 2
a H'(fr fH: fN) 2
Then I{f,,h ,a,f) = h -a+ 5 df
P''m m 2 2 N
o 2 J1 .27
P N P
k k
axzai = 0 for k > 2
8hk da
m
8k1
But ;k_ > 0 for k > 2. But our initial values of fp,fpo , were
P
quite close to the actual fp, i.e. Afp = 0 in three tests and

Afp = 0.5 for the fourth case. We therefore see that the parabolic
model has the property that it is linear in two of the three parameters,
a property which makes this functional form particularly appealing

for use in a lamination method.
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IV. SUMMARY AND CONCLUSIONS

The problem is to determine under what conditions equation
(1.1) and equation (1. 2) uniquely specify the plasma frequency as a
function of height, fN(h); and, providing that these restrictions are
satisfied, to determine what numerical techniques which are compat-
ible with reasonable physical assumptions. are available for inverting
these equations.

For frnin > 0, neither equation alone allows a unique
solution for any dip angle, 6. For fmin > 0, both equations
together do not give a unique solution for the case of longitudinal
propagation, 6 = 00, if the z-trace and x-trace are used. For 8 > 0°
and fmin > 0, we have assumed that the solution is unique when the
x-trace and o-trace are used.

For fmin = 0 or when either virtual height trace can be
extrapolated to zero, we have presented an iterative method based on
minimizing the sum of the squared residuals between the ohserved
and calculated virtual heights, where the calculated virtual heights
are derived from a chosen functional form. The power of this approach
is that the independent variable is h, whereas in other methods the
independent variable is qo(fN). Since h is the independent variable, we
need no longer restrict ourselves to monotonic functions of h, and can

easily include the variation of the gyrofrequency, £ with height (as we

H)
must on the topside}. The weakness of this approach is that it is an
iterative technique, and, consequently, is only feasible if a high speed

computer is available. Even then it is slow compared to the methods of

Doupnik and Paul and Wright., How to determine the initial parameter



- 44 -
values is also a problem. Schmerling has suggested a reasonable
solution which is to crudely determine fN(h) from the ionogram using
some manual technique, e.g. slider method of Schmerling and
Ventrice (1958).

Titheridge (1959) has suggested a solution for the ''start"
problem which we have extended. This solution is inherently
superior to the model approaches of Paul and Wright (1963),

Doupnik (1963), etc. since it does not make a model assumption for
the underlying ionization.

We have developed a technique for the reduction of ionograms
to electron density height profiles which is based on a least-squares
method, and has many advantages over the other techniques now in use.
No attempt has been made to develop this to the stage where it is
suitable for the routine reduction of large numbers of ionograms, but
we feel that this approach is very promising for this purpose, and
suggest that further studies should be continued as follows:

(1) Model studies to refine the low-frequency solution given
on page 27.

(2) Model studies of the valley problem, where both monotonic
and non-monotonic functions of h are used as discussed on page 34.

(3) Model studies of the topside (above F2 peak) where the
gyro-frequency variation is included as given on page 23.

(4) Model studies on the effect of the initial guesses on conver-
gence, for models other than a parabola.

(5) Investigation of the uniqueness of the solution for fmin > o

and 6 > o,
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(6) Investigation of more efficient programming techniques

to reduce computer time.
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